Rank | The Largest Known Twin Primes | Digits | When | Additions |
1 | 2996863034895 • 21290000 ± 1 * first known with more than 300000 decimal digits |
388342 | 19 Sep 2016 | Tom Greer, TwinGen, PrimeGrid, LLR |
2 | 3756801695685 • 2666669 ± 1 * first known with more than 200000 decimal digits |
200700 | 26 Dec 2011 | Timothy Winslow, TwinGen, PrimeGrid, LLR |
3 | 66982155216384 − 6698215528192 ± 1 | 144605 | 26 Apr 2024 | Roman Trunov; Cyclo; PRST |
4 | 22271030616384 − 2227103068192 ± 1 | 136770 | 29 Mar 2024 | Bruce Marler; Cyclo; PRST |
5 | 9955858992 • 11111111 ± 1 | 115721 | 4 Apr 2025 | Göran Schmidt, NewPGen, PRST |
6 | 65516468355 • 2333333 ± 1 * first known with more than 100000 decimal digits |
100355 | 15 Aug 2009 | Peter Kaiser, NewPGen, PrimeGrid, TPS, LLR |
7 | 1867513233 • 2266698 ± 1 | 80294 | 15 May 2025 | Bo Tornberg, TwinGen, LLR |
8 | 201926367 • 2266668 ± 1 | 80284 | 6 May 2024 | Göran Schmidt, NewPGen, PRST |
9 | 160204065 • 2262148 ± 1 | 78923 | 8 Jul 2021 | Erwin Doescher, LLR |
10 | 18936119858192 − 18936119854096 ± 1 | 76000 | 06 Mar 2024 | Bruce Marler; Cyclo; PRST |
More Twin Primes |
Rank | The Largest Known Primes Triplets | Digits | When | Additions | Certificates |
1 | 4404139952163 • 267002 − 5 + d, d = 0, 4, 6 * first known with more than 20000 decimal digits to given pattern |
20183 | 11 Jul 2024 | Serge Batalov, PolySieve, OpenPFGW, CM | click |
2 | 4111286921397 • 266420 − 1 + d, d = 0, 2, 6 * first known with more than 20000 decimal digits to given pattern |
20008 | 24 Apr 2019 | Peter Kaiser, PolySieve, LLR, Primo | click |
3 | 6521953289619 • 255555 − 5 + d, d = 0, 4, 6 | 16737 | 30 Apr 2013 | Peter Kaiser | click |
4 | 56667641271 • 244441 − 1 + d, d = 0, 2, 6 | 13389 | 1 Apr 2022 | Stephan Schöler, NewPGen, OpenPFGW; Oliver Kruse, Primo | click |
5 | 4207993863 • 238624 − 1 + d, d = 0, 2, 6 | 11637 | 5 Jun 2021 | Frank Doornink, NewPGen, LLR, Primo | click |
6 | 14059969053 • 236672 − 5 + d, d = 0, 4, 6 | 11050 | 17 Jun 2018 | Serge Batalov, NewPGen, OpenPFGW, Primo | click |
7 | 3221449497221499 • 234567 − 1 + d, d = 0, 2, 6 | 10422 | 2 Sep 2015 | Peter Kaiser, NewPGen, LLR, OpenPFGW, Primo | click |
8 | 1288726869465789 • 234567 − 5 + d, d = 0, 4, 6 | 10421 | 23 Apr 2014 | Peter Kaiser, Primo | click |
9 | 647935598824239 • 233619 − 1 + d, d = 0, 2, 6 | 10136 | 22 May 2019 | Peter Kaiser, Primo | click |
10 | 209102639346537 • 233620 − 1 + d, d = 0, 2, 6 | 10135 | 22 May 2019 | Peter Kaiser, Primo | click |
More Prime Triplets |
Rank | The Largest Known Prime Quadruplets | Digits | When | Additions | Certificates |
1 | 667674063382677 • 233608 − 1 + d, d = 0, 2, 6, 8 * first known with more than 10000 decimal digits |
10132 | 27 Feb 2019 | Peter Kaiser, Primo | click |
2 | 4122429552750669 • 216567 − 1 + d, d = 0, 2, 6, 8 * first known with more than 5000 decimal digits |
5003 | 10 Mar 2016 | Peter Kaiser, GSIEVE, NewPGen, LLR, Primo | click |
3 | (1049713153083 • 2917# • (567 • 2917# + 1) + 11#) • (567 • 2917# − 1) / 7# + 1 + d, d = 0, 2, 6, 8 | 3753 | 22 Jul 2023 | Ken Davis, APTreeSieve, OpenPFGW, Primo | click |
4 | 101406820312263 • 212042 − 1 + d, d = 0, 2, 6, 8 | 3640 | 13 Jun 2018 | Serge Batalov, OpenPFGW, NewPGen, Primo | click |
5 | 2673092556681 • 153048 − 4 + d, d = 0, 2, 6, 8 | 3598 | 14 Sep 2015 | Serge Batalov, OpenPFGW, NewPGen, Primo | click |
6 | 2339662057597 • 103490 + 1 + d, d = 0, 2, 6, 8 | 3503 | 21 Dec 2013 | Serge Batalov, OpenPFGW, NewPGen, Primo | click |
7 | 305136484659 • 211399 − 1 + d, d = 0, 2, 6, 8 | 3443 | 28 Sep 2013 | Serge Batalov, OpenPFGW, NewPGen, Primo | click |
8 | 722047383902589 • 211111 − 1 + d, d = 0, 2, 6, 8 | 3360 | 20 Apr 2013 | Reto Keiser, NewPGen, OpenPFGW, Primo | click |
9 | 585150568069684836 • 7757# / 85085 + 5 + d, d = 0, 2, 6, 8 | 3344 | 6 Mar 2022 | Peter Kaiser, OpenPFGW, Primo | click |
10 | 43697976428649 • 29999 − 1 + d, d = 0, 2, 6, 8 * first known with more than 3000 decimal digits |
3024 | 24 Mar 2012 | Peter Kaiser, Primo 3.0.9 | click |
More Prime Quadruplets |
Rank | The Largest Known Prime Quintuplets | Digits | When | Additions | Certificates |
1 |
585150568069684836 • 7757# / 85085 + 5 + d, d = 0, 2, 6, 8, 12 * first known with more than 3000 digits to given pattern |
3344 | 6 Mar 2022 | Peter Kaiser, OpenPFGW, Primo | click |
2 | 566761969187 • 4733# / 2 − 8 + d, d = 0, 4, 6, 10, 12 * first known with more than 2000 digits to given pattern |
2034 | 6 Dec 2020 | Serge Batalov, NewPGen, OpenPFGW, Primo | click |
3 | 126831252923413 • 4657# / 273 + 1 + d, d = 0, 2, 6, 8, 12 * first known with more than 2000 digits to given pattern |
2002 | 8 Nov 2020 | Peter Kaiser, Primo | click |
4 | 394254311495 • 3733# / 2 − 8 + d, d = 0, 4, 6, 10, 12 | 1606 | 30 Nov 2017 | Serge Batalov, NewPGen, OpenPFGW, Primo | click |
5 | 2316765173284 • 3593# + 16061 + d, d = 0, 2, 6, 8, 12 | 1543 | 16 Oct 2016 | Norman Luhn, Primo | click |
6 | 163252711105 • 3371# / 2 − 8 + d, d = 0, 4, 6, 10, 12 | 1443 | 1 Jan 2014 | Serge Batalov, OpenPFGW, NewPGen, Primo | click |
7 | 9039840848561 • 3299# / 35 − 5 + d, d = 0, 4, 6, 10, 12 | 1401 | 28 Dec 2013 | Serge Batalov, OpenPFGW, NewPGen, Primo | click |
8 | 699549860111847 • 24244 − 1 + d, d = 0, 2, 6, 8, 12 | 1293 | 3 Dec 2013 | Reto Keiser, R. Gerbicz, OpenPFGW, Primo | click |
9 | 101199 + 20483870459152351 + d, d = 0, 2, 6, 8, 12 * smallest with 1200 decimal digits to given pattern |
1200 | 3 Mar 2023 | Norman Luhn, OpenPFGW, Primo 3.0.9 | click |
10 | 101199 + 7033048489975137 + d, d = 0, 4, 6, 10, 12 * smallest with 1200 decimal digits to given pattern |
1200 | 17 Mar 2023 | Norman Luhn, OpenPFGW, Primo 3.0.9 | click |
More Prime Quintuplets |
Rank | The Largest Known Prime Sextuplets | Digits | When | Additions | Certificates |
1 | 23700 + 33888977692820810260792517451 + d, d = 0, 4, 6, 10, 12, 16 | 1114 | 8 Nov 2021 | Vidar Nakling, Primo, Sixfinder ( based on Riecoin miners ) |
click |
2 | 28993093368077 • 2399# + 19417 + d, d = 0, 4, 6, 10, 12, 16 * first known with more than 1000 decimal digits |
1037 | 14 Mar 2016 | Norman Luhn, APSIEVE, Primo | click |
3 | 6646873760397777881866826327962099685830865900246688640856 • 1699# + 43777 + d, d = 0, 4, 6, 10, 12, 16 | 780 | 8 Nov 2018 | Vidar Nakling, Primo | - |
4 | 29720510172503062360713760607985203309940766118866743491802189150471978534404249 • 22299 + 14271253084334081637544486111223831073612730979632132919368177563415768349505 + d, d = 0, 4, 6, 10, 12, 16 |
772 | 28 Jan 2018 | Riecoin #822096 | - |
5 | 29749903422302373222996698880833194129159047179535887991184960156219652236318921 • 22293 + 679631792885016654160023247517239700227428004849763556497260661860592843345 + d, d = 0, 4, 6, 10, 12, 16 |
770 | 28 Sep 2017 | Riecoin #793872 | - |
6 | 29696802688480280387313212926526693549449146292085717645262228449092881114972806 • 22290 + 1946690158750077943506249776690378666457458353296002764327070450442847661633 + d, d = 0, 4, 6, 10, 12, 16 |
769 | 25 Feb 2018 | Riecoin #838224 | - |
7 | 29744205023784420961031622414734790416939049568996819659808238403983863222665068 • 22288 + 14305894933680691041378655981062938998356035914288745998258984615535179477709 + d, d = 0, 4, 6, 10, 12, 16 |
769 | 18 Feb 2018 | Riecoin #834192 | - |
8 | 29707412718946949415029080194980493978605678414396606766712262274235284928962561 • 22278 + 21774293793439586643674306888881718167342014062406478752847391700510857054773 + d, d = 0, 4, 6, 10, 12, 16 |
766 | 14 Jan 2018 | Riecoin #814032 | - |
9 | 29696978890366869883141509418765838581871522982358338407613039711378021084519043 • 22259 + 24152316155470595374357736963765392505702343434016117070743766886456802014213 + d, d = 0, 4, 6, 10, 12, 16 |
766 | 31 Dec 2017 | Riecoin #805968 | - |
10 | 29691575669072177222494655186416928710256802541243921484227880404600991044790342 • 22259 + 22953847913844494543791161053509719129919186139904030102712344430311343318911 + d, d = 0, 4, 6, 10, 12, 16 |
760 | 16 Dec 2017 | Riecoin #797904 | - |
More Prime Sextuplets |
Rank | The Largest Known Prime Septuplets | Digits | When | Additions | Certificates |
1 | 113225039190926127209 • 2339# / 57057 + 1 + d, d = 0, 2, 6, 8, 12, 18, 20 * first known with more than 1000 decimal digits to given pattern |
1002 | 27 Jan 2021 | Peter Kaiser | click |
2 | 3282186887886020104563334103168841560140170122832878265333984717524446848642006351778066196724473 9224962020153653925994202321897236902676229040360901005487309186655777663859063397693729163631275766 0779987530903845763711693853827939526026506444774774261236889041020217108597484837589978261046949778 7199182516499466558387976965904497393971453496036241885200541893611077817261813672809971503287259089 • 317# + 1068701 + d, d = 0, 2, 6, 8, 12, 18, 20 |
527 | 16 Jun 2019 | Vidar Nakling,
rieMiner 0.9, Primo |
- |
3 | 115828580393941 • 1193# + 5132201 + d, d = 0, 2, 6, 8, 12, 18, 20 * first known with more than 500 decimal digits to given pattern |
515 | 18 Jan 2018 | Norman Luhn, Primo | - |
4 | 1749454900366668261124366444904767913042 • 1051# + 235367427477641 + d, d = 0, 2, 6, 8, 12, 18, 20 | 482 | 10 Sep 2023 | Michalis Christou, rieMiner | - |
5 | 1749440332764626179112277073423987083854 • 1051# + 114023297140211 + d, d = 0, 2, 6, 8, 12, 18, 20 | 482 | 10 Sep 2023 | Michalis Christou, rieMiner | - |
6 | 1785036139318226774335532641427159030322 • 991# + 145933845312371 + d, d = 0, 2, 6, 8, 12, 18, 20 | 452 | 10 Sep 2023 | Michalis Christou, rieMiner | - |
7 | 4733578067069 • 937# + 626609 + d, d = 0, 2, 8, 12, 14, 18, 20 * first known with more than 400 decimal digits to given pattern |
402 | 9 May 2016 | Norman Luhn, Primo | - |
8 | 362084778371560960224893228648902482898 • 863# + 235367427477641 + d, d = 0, 2, 6, 8, 12, 18, 20 | 401 | 10 Sep 2023 | Michalis Christou, rieMiner | - |
9 | 362084724493692554397476622571818362892 • 863# + 235290683530361 + d, d = 0, 2, 6, 8, 12, 18, 20 | 401 | 10 Sep 2023 | Michalis Christou, rieMiner | - |
10 | 362084689974572819018431260315189393115 • 863# + 220452326319761 + d, d = 0, 2, 6, 8, 12, 18, 20 | 401 | 10 Sep 2023 | Michalis Christou, rieMiner | - |
More Prime Septuplets |
Rank | The Largest Known Prime Octuplets | Digits | When | Additions |
1 | 362079385668757696008683096558661746463 • 863# + 114023297140211 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 * first known with more than 400 decimal digits to given pattern |
401 | 10 Sep 2023 | Michalis Christou, rieMiner 0.93a |
2 | 17823192282008874449172703428792123231110 • 771# + 145933845312371 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 | 362 | 12 Jan 2023 | Michalis Christou, rieMiner |
3 | 531258360785860208657753 • 757# / 1768767 + 1 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 | 333 | 30 Sep 2022 | Peter Kaiser, Primo |
4 | 530956818040688210255681 • 757# / 1768767 + 1 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 | 333 | 30 Sep 2022 | Peter Kaiser, Primo |
5 | 697723422149271424870176724491962624555 • 701# + 145888993435301 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 | 332 | 28 Apr 2022 | Michalis Christou, rieMiner 0.91 |
6 | 5586218959960365309179 • 757# / 1768767 + 1 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 | 331 | 12 Sep 2022 | Peter Kaiser, Primo |
7 | 4869586684665128135306 • 757# / 1768767 + 1 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 | 331 | 30 Sep 2022 | Peter Kaiser, Primo |
8 | 6879356578124627875380298699944709053335 • 677# + 980125031081081 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 | 324 | 12 Mar 2021 | Michalis Christou, rieMiner 0.91 |
9 | 11353931709866739648226955494600568354731404614234625210000062657515902212233032370856173278043660576308 • 541# + 301713410008253 + d, d = 0, 6, 8, 14, 18, 20, 24, 26 |
323 | 21 Mar 2025 | Riecoin #2322411 |
10 | 85942978608490853163266464829675186732716531436220205198524648761309585030760262728948076619827920 • 541# + 301570107719123 + d, d = 0, 6, 8, 14, 18, 20, 24, 26 |
318 | 7 May 2023 | Riecoin #1927251 |
More Prime Octuplets | ||||
Prime Octuplets, found by Riecoin |
Rank | The Largest Known Prime Nonuplets | Digits | When | Additions |
1 | 182075127245948453356763852678412657384571384320476086323955359028566228121357180020362596219 • 541# + 145933845312371 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 |
312 | 22 Apr 2023 | Riecoin #1918654 |
2 | 6981459541055817191260362842479625063402912945070015867718881817316331990854697141515826226327285164890 • 503# + 301713410008249 + d, d = 0, 4, 10, 12, 18, 22, 24, 28, 30 |
312 | 7 May 2023 | Riecoin #1926945 |
3 | 629890765169303956463203674344921136457914174210975896062738680394230709899644451651443737728 • 523# + 295565457422351 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 |
310 | 6 Feb 2025 | Riecoin #2297494 |
4 | 232419521557645481135590351622784242665787702180336807858480405171833045030126672414993707 • 541# + 235367427477641 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 |
310 | 30 Apr 2025 | Riecoin #2345662 |
5 | 7620229574837377603687519001462575679324290703538353038451014140653366016375223441137843726785037341 • 503# + 220469307413891 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 |
309 | 16 Feb 2022 | Riecoin #1669866 |
6 | 1019798582632338394076105053210508851392962816307091970137493574265559200180882377733723233784599113386 • 499# + 145933845312371 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 |
309 | 01 May 2025 | Riecoin #2345904 |
7 | 4544802941746849322755400504979525801125583245162538446615359445516948017861576296257331705348 • 521# + 301713410008249 + d, d = 0, 4, 10, 12, 18, 22, 24, 28, 30 |
308 | 27 May 2023 | Riecoin #1938898 |
8 | 1717612405724514020343974524411477095916171281075654764968715655356524312373510954101675371605 • 521# + 220452326319761 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 |
308 | 28 May 2025 | Riecoin #2361437 |
9 | 50134399968336406861291010846106783509160363030730313813522797714265536760109675359280388591726600514085 • 491# + 114023297140211 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 |
308 | 5 Apr 2025 | Riecoin #2330830 |
10 | 154140554027854736762047378850909920571712371864836723122728277535436255651743244125969075784222257 • 503# + 226193845148629 + d, d = 0, 4, 10, 12, 18, 22, 24, 28, 30 |
307 | 27 Apr 2023 | Riecoin #1921294 |
More Prime Nonuplets | ||||
Prime Nonuplets, found by Riecoin |
Rank | The Largest Known Prime 10-tuplets | Digits | When | Additions | |
1 | 14315614956030418747867488895208199566750873528908316976274174208238191434937011407287479676495550 • 449# + 226554621544607 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 32 * first known with more than 200 decimal digits to given pattern |
282 | 12 Sep 2021 | Riecoin #1579367 | |
2 | 290901656335108169864195656135043662615199446375386143995339722400236057821426952579658098504166333411889 • 401# + 380284918609481 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 * first known with more than 200 decimal digits to given pattern |
269 | 27 Jul 2021 | Riecoin #1551825 | |
3 | 14257429881902877844339877915045298096140599288873476083093543949692946630381247693511330479634493 • 367# + 114189340938131 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 |
246 | 18 Aug 2022 | Riecoin #1775788 | |
4 | 33521646378383216495527 • 331# + 4700094892301 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 | 156 | 4 Apr 2020 | Thomas Nguyen, rieMiner 0.91, MPZ-APRCL |
|
5 | 772556746441918 • 293# + 29247917 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 32 | 136 | 9 Feb 2017 | Norman Luhn | |
6 | 7425 • 281# + 471487291717627721 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 | 120 | 27 May 2016 | Roger Thompson | |
7 | 118557188915212 • 257# + 25658441 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 | 118 | 27 Jun 2014 | Norman Luhn | |
8 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 53586844409797545 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
9 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 51143234991402697 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
10 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 50679161987995696 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
More Prime 10-tuplets |
Rank | The Largest Known Prime 11-tuplets | Digits | When | Additions | |
1 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 49376500222690335 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
2 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 46622982649030457 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
3 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 30796489110940369 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
4 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 27407861785763183 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
5 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 20731977215353082 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
6 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 20118509988610513 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
7 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 15866045335517629 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
8 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 5238271627884665 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
107 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
9 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 4471872451082759 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
107 | 28 May 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
10 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 1296173254392493 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 |
107 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
More Prime 11-tuplets |
Rank | The Largest Known Prime 12-tuplets | Digits | When | Additions | |
1 | 13243795731372733191902494675154142263612189966992593522251560981597803197621024152571147501 + 27407861785763183 • 229# + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 * first known with more than 100 decimal digits to given pattern |
108 | 23 Sep 2019 | Peter Kaiser, David Stevens, Polysieve, OpenPFGW, Primo |
|
2 | 613176722801194 • 151# + 177321217 + d, d = 0, 6, 10, 12, 16, 22, 24, 30, 34, 36, 40, 42 | 75 | 30 Sep 2014 | Michael Stocker, Primo |
|
3 | 467756 • 151# + 193828829641176461 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 | 66 | 20 May 2014 | Roger Thompson |
|
4 | 9985637467 • 139# + 3629868888791261 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 | 66 | 1 Oct 2021 | Roger Thompson |
|
5 | 9985397181 • 139# + 249386599747880711 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 | 66 | 1 Oct 2021 | Roger Thompson |
|
6 | 59125383480754 • 113# + 12455557957 + d, d = 0, 6, 10, 12, 16, 22, 24, 30, 34, 36, 40, 42 * first known with more than 50 decimal digits to given pattern |
61 | 9 Sep 2013 | Michael Stocker |
|
7 | 78989413043158 • 109# + 38458151 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 * first known with more than 50 decimal digits to given pattern |
59 | 18 Jan 2010 | Norman Luhn |
|
8 | 1454135114 • 113# + 9546491279441 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 | 56 | 2 Dec 2024 | Martin Raab |
|
9 | 450725899 • 113# + 1748520218561 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 | 56 | 4 Nov 2014 | Martin Raab |
|
10 | 1000000000000000000000000000000002955087732304487826931 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 * smallest with 55 decimal digits to given pattern |
55 | 22 Sep 2022 | Norman Luhn |
|
More Prime 12-tuplets |
Rank | The Largest Known Prime 13-tuplets | Digits | When | Additions | |
1 | 9985637467 • 139# + 3629868888791261 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48 | 66 | 1 Oct 2021 | Roger Thompson | |
2 | 4135997219394611 • 109# + 117092849 + d, d = 0, 2, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48 | 61 | 23 Mar 2017 | Norman Luhn |
|
3 | 14815550 • 107# + 4385574275277313 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48 | 50 | 5 Feb 2013 | Roger Thompson |
|
4 | 14815550 • 107# + 4385574275277311 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48 | 50 | 5 Feb 2013 | Roger Thompson |
|
5 | 10000000000000000000000000019294427203099948114321 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48 * smallest with 50 decimal digits to given pattern |
50 | 7 May 2023 | Norman Luhn |
|
6 | 61571 • 107# + 4803194122972361 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48 | 48 | 7 Aug 2009 | Jens Kruse Andersen |
|
7 | 381955327397348 • 79# + 18393211 + d, d = 0, 6, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 48 | 46 | 28 Dec 2007 | Norman Luhn |
|
8 | 381955327397348 • 79# + 18393209 + d, d = 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48 | 46 | 28 Dec 2007 | Norman Luhn |
|
9 | 100000000000000000000006149198224095343810309 + d, d = 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48 * smallest with 45 decimal digits to given pattern |
45 | 2 Mar 2022 | Norman Luhn |
|
10 | 100000000000000000000004356680452416578030761 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48 * smallest with 45 decimal digits to given pattern |
45 | 5 Feb 2022 | Norman Luhn |
|
More Prime 13-tuplets |
Rank | The Largest Known Prime 14-tuplets | Digits | When | Additions | |
1 | 14815550 • 107# + 4385574275277311 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 * first known with at least 50 decimal digits to given pattern |
50 | 5 Feb 2013 | Roger Thompson | |
2 | 381955327397348 • 79# + 18393209 + d, d = 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50 | 46 | 28 Dec 2007 | Norman Luhn |
|
3 | 1000000000000000014210159036148101380471 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 * smallest with 40 decimal digits to given pattern |
40 | 10 Mar 2021 | Norman Luhn |
|
4 | 1000000000000000000349508508460276218889 + d, d = 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50 * smallest with 40 decimal digits to given pattern |
40 | 10 Mar 2021 | Norman Luhn |
|
5 | 10000000000009283441665311798539399 + d, d = 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50 * smallest with 35 decimal digits to given pattern |
35 | 18 Feb 2021 | Norman Luhn |
|
6 | 10000000000001275924044876917671361 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 * smallest with 35 decimal digits to given pattern |
35 | 18 Feb 2021 | Norman Luhn |
|
7 | 26093748 • 67# + 383123187762431 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 | 33 | 8 Feb 2005 | Christ van Willegen & Jens Kruse Andersen |
|
8 | 108804167016152508211944400342691 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 | 33 | 14 Apr 2008 | Jens Kruse Andersen |
|
9 | 107173714602413868775303366934621 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 | 33 | 14 Apr 2008 | Jens Kruse Andersen |
|
10 | 101885197790002105359911556070661 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 | 33 | 14 Apr 2008 | Jens Kruse Andersen |
|
More Prime 14-tuplets |
Rank | The Largest Known Prime 15-tuplets | Digits | When | Additions | |
1 | 33554294028531569 • 61# + 57800747 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56 * first known with at least 40 decimal digits to given pattern |
40 | 25 Jan 2017 | Norman Luhn | |
2 | 322255 • 73# + 1354238543317302647 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56 | 35 | 18 Nov 2016 | Roger Thompson | |
3 | 10004646546202610858599716515809907 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56 | 35 | 4 Sep 2012 | Roger Thompson | |
4 | 94 • 79# + 1341680294611244014367 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56 | 33 | 5 Feb 2021 | Roger Thompson | |
5 | 3684 • 73# + 880858118723497737827 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56 | 33 | 5 Feb 2021 | Roger Thompson | |
6 | 107173714602413868775303366934621 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56 | 33 | 14 Apr 2008 | Jens Kruse Andersen | |
7 | 99999999948164978600250563546411 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56 | 32 | 29 Nov 2004 | Jörg Waldvogel and Peter Leikauf | |
8 | 1251030012595955901312188450381 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56 | 31 | 16 Oct 2003 | Hans Rosenthal & Jens Kruse Andersen | |
9 | 1100916249233879857334075234831 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56 | 31 | 16 Oct 2003 | Hans Rosenthal & Jens Kruse Andersen | |
10 | 1003234871202624616703163933857 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56 | 31 | 9 Aug 2012 | Roger Thompson | |
More Prime 15-tuplets |
Rank | The Largest Known Prime 16-tuplets | Digits | When | Additions | |
1 | 322255 • 73# + 1354238543317302647 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60 * first known with at least 35 decimal digits to given pattern |
35 | 18 Nov 2016 | Roger Thompson | |
2 | 94 • 79# + 1341680294611244014363 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60 | 33 | 5 Feb 2021 | Roger Thompson | |
3 | 3684 • 73# + 880858118723497737827 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60 | 33 | 5 Feb 2021 | Roger Thompson | |
4 | 1003234871202624616703163933853 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60 * first known with more than 30 decimal digits to given pattern |
31 | 9 Aug 2012 | Roger Thompson | |
5 | 11413975438568556104209245223 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60 | 29 | 2 Jan 2012 | Roger Thompson | |
6 | 5867208169546174917450988007 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60 | 28 | 11 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
7 | 5621078036155517013724659017 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60 | 28 | 4 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
8 | 4668263977931056970475231227 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
9 | 4652363394518920290108071177 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
10 | 4483200447126419500533043997 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
More Prime 16-tuplets |
Rank | The Largest Known Prime 17-tuplets | Digits | When | Additions | |
1 | 3684 • 73# + 880858118723497737821 + d, d = 0, 6, 8, 12, 18, 20, 26, 32, 36, 38, 42, 48, 50, 56, 60, 62, 66 | 33 | 5 Feb 2021 | Roger Thompson | |
2 | 100845391935878564991556707107 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56, 62, 66 * first known with at least 30 decimal digits to given pattern |
30 | 19 Feb 2013 | Roger Thompson | |
3 | 11413975438568556104209245223 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60, 66 | 29 | 2 Jan 2012 | Roger Thompson | |
4 | 11410793439953412180643704677 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56, 62, 66 | 29 | 2 Jan 2012 | Roger Thompson | |
5 | 5867208169546174917450988001 + d, d = 0, 6, 8, 12, 18, 20, 26, 32, 36, 38, 42, 48, 50, 56, 60, 62, 66 | 28 | 11 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
6 | 5867208169546174917450987997 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66 | 28 | 11 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
7 | 5621078036155517013724659011 + d, d = 0, 6, 8, 12, 18, 20, 26, 32, 36, 38, 42, 48, 50, 56, 60, 62, 66 | 28 | 4 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
8 | 5621078036155517013724659007 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66 | 28 | 4 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
9 | 4668263977931056970475231221 + d, d = 0, 6, 8, 12, 18, 20, 26, 32, 36, 38, 42, 48, 50, 56, 60, 62, 66 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
10 | 4668263977931056970475231217 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
More Prime 17-tuplets |
Rank | The Largest Known Prime 18-tuplets | Digits | When | Additions | |
1 | 5867208169546174917450987997 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 11 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
2 | 5621078036155517013724659007 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 4 Mar 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
3 | 4668263977931056970475231217 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
4 | 4652363394518920290108071167 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
5 | 4483200447126419500533043987 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 4 Jan 2014 | Raanan Chermoni & Jaroslaw Wroblewski | |
6 | 3361885098594416802447362317 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 30 Jul 2013 | Raanan Chermoni & Jaroslaw Wroblewski | |
7 | 3261917553005305074228431077 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 30 Jul 2013 | Raanan Chermoni & Jaroslaw Wroblewski | |
8 | 3176488693054534709318830357 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 30 Jul 2013 | Raanan Chermoni & Jaroslaw Wroblewski | |
9 | 2650778861583720495199114537 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 25 Feb 2013 | Raanan Chermoni & Jaroslaw Wroblewski | |
10 | 2406179998282157386567481197 + d, d = 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64, 66, 70 | 28 | 31 Dec 2012 | Raanan Chermoni & Jaroslaw Wroblewski | |
More Prime 18-tuplets |
Rank | The Largest Known Prime 19-tuplets | Digits | When | Additions | 1 | 622803914376064301858782434517 + d, d = 0, 4, 6, 10, 12, 16, 24, 30, 34, 40, 42, 46, 52, 54, 60, 66, 70, 72, 76 * first known with at least 30 decimal digits to given pattern |
30 | 27 Dec 2018 | Raanan Chermoni & Jaroslaw Wroblewski |
2 | 248283957683772055928836513597 + d, d = 0, 4, 6, 10, 16, 22, 24, 30, 34, 36, 42, 46, 52, 60, 64, 66, 70, 72, 76 | 30 | 1 Aug 2016 | Raanan Chermoni & Jaroslaw Wroblewski |
3 | 138433730977092118055599751677 + d, d = 0, 4, 6, 10, 16, 22, 24, 30, 34, 36, 42, 46, 52, 60, 64, 66, 70, 72, 76 * first known with at least 30 decimal digits to given pattern |
30 | 8 Oct 2015 | Raanan Chermoni & Jaroslaw Wroblewski |
4 | 39433867730216371575457664407 + d, d = 0, 4, 6, 10, 16, 22, 24, 30, 34, 36, 42, 46, 52, 60, 64, 66, 70, 72, 76 | 29 | 8 Jan 2015 | Raanan Chermoni & Jaroslaw Wroblewski |
5 | 2406179998282157386567481191 + d, d = 0, 6, 10, 16, 18, 22, 28, 30, 36, 42, 46, 48, 52, 58, 60, 66, 70, 72, 76 | 28 | 31 Dec 2012 | Raanan Chermoni & Jaroslaw Wroblewski |
6 | 2348190884512663974906615481 + d, d = 0, 6, 10, 16, 18, 22, 28, 30, 36, 42, 46, 48, 52, 58, 60, 66, 70, 72, 76 | 28 | 17 Dec 2012 | Raanan Chermoni & Jaroslaw Wroblewski |
7 | 917810189564189435979968491 + d, d = 0, 6, 10, 16, 18, 22, 28, 30, 36, 42, 46, 48, 52, 58, 60, 66, 70, 72, 76 | 27 | 29 May 2011 | Raanan Chermoni & Jaroslaw Wroblewski |
8 | 656632460108426841186109951 + d, d = 0, 6, 10, 16, 18, 22, 28, 30, 36, 42, 46, 48, 52, 58, 60, 66, 70, 72, 76 | 27 | 19 Feb 2011 | Raanan Chermoni & Jaroslaw Wroblewski |
9 | 630134041802574490482213901 + d, d = 0, 6, 10, 16, 18, 22, 28, 30, 36, 42, 46, 48, 52, 58, 60, 66, 70, 72, 76 | 27 | 9 Feb 2011 | Raanan Chermoni & Jaroslaw Wroblewski |
10 | 37 + d, d = 0, 4, 6, 10, 16, 22, 24, 30, 34, 36, 42, 46, 52, 60, 64, 66, 70, 72, 76 | 2-3 | - | - |
More Prime 19-tuplets |
Rank | The Largest Known Prime 20-tuplets | Digits | When | Additions | 1 | 1236637204227022808686214288579 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80 | 31 | 23 May 2021 | Raanan Chermoni & Jaroslaw Wroblewski |
2 | 1188350591359110800209379560799 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80 | 31 | 21 Jan 2021 | Raanan Chermoni & Jaroslaw Wroblewski | |
3 | 1153897621507935436463788957529 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80 | 31 | 26 Dec 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
4 | 1135540756371356698957890225821 + d, d = 0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 50, 56, 62, 66, 68, 72, 78, 80 | 31 | 19 Dec 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
5 | 1126002593922465663847897293731 + d, d = 0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 50, 56, 62, 66, 68, 72, 78, 80 | 31 | 17 Nov 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
6 | 1094372814043722195189448411199 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80 * first known with more 30 decimal digits to given pattern |
31 | 20 Oct 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
7 | 1060475118776959297139870952701 + d, d = 0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 50, 56, 62, 66, 68, 72, 78, 80 * first known with more 30 decimal digits to given pattern |
31 | 18 Sep 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
8 | 999627565307688186459783232931 + d, d = 0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 50, 56, 62, 66, 68, 72, 78, 80 | 30 | 19 Jun 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
9 | 957278727962618711849051282459 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80 | 30 | 23 Mar 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
10 | 839013472011818416634745523991 + d, d = 0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 50, 56, 62, 66, 68, 72, 78, 80 | 30 | 28 Oct 2020 | Raanan Chermoni & Jaroslaw Wroblewski | |
More Prime 20-tuplets |
Rank | The Largest Known Prime 21-tuplets | Digits | When | Additions | 1 | 622803914376064301858782434517 + d, d = 0, 4, 6, 10, 12, 16, 24, 30, 34, 40, 42, 46, 52, 54, 60, 66, 70, 72, 76, 82, 84 * smallest & first known to given pattern |
30 | 27 Dec 2018 | Raanan Chermoni & Jaroslaw Wroblewski |
2 | 248283957683772055928836513589 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80, 84 | 30 | 1 Aug 2016 | Raanan Chermoni & Jaroslaw Wroblewski | |
3 | 138433730977092118055599751669 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80, 84 | 30 | 8 Oct 2015 | Raanan Chermoni & Jaroslaw Wroblewski | |
4 | 39433867730216371575457664399 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80, 84 * first non-trivial known to given pattern |
29 | 8 Jan 2015 | Raanan Chermoni & Jaroslaw Wroblewski | |
5 | 29 + d, d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80, 84 | 2-3 | - | - | |
More Prime 21-tuplets |