Known smallest n-digit prime 13-tuplets

base prime + di are 13 primes

Pattern d : d = 0, 6, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 48
digits base prime
15 186460616596321
16 7582919852522851
17 31979851757518501
18 136667406812471371
19 1002262729765021561
20 10044468277996476391
21 100069401419430877501
22 1000780824515954957311
23 10000207911659121170851
24 100000928999915905045921
25 1000001327368961591338501
26 10000006089564559362849391
27 100000024647881852654895571
28 1000000005937801480331253601
29 10000000005590295017764931551
30 100000000022370766039587549751
35 10000000000000324000701496110723931
40 1000000000000000000349508508460276218891
45 100000000000000000000000370753267420360939851
Pattern d : d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48
digits base prime
2 13
16 4289907938811613
17 21817283854511263
18 104814760374339133
19 1006587882969594043
20 10014979242404691673
21 100061936824114922593
22 1000453290393934744303
23 10000657353187498134073
24 100001410728586479819643
25 1000000717280543871559603
26 10000004938163400388313203
27 100000001407253101177188283
28 1000000000384205824803586723
29 10000000022100435294847376413
30 100000000013427005044165137643
35 10000000000000094989640220894283993
40 1000000000000000002713562652524314606953
45 100000000000000000000000123638035929118697823
Pattern d : d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 36, 46, 48
digits base prime
16 1707898733581273
17 10907318641689703
18 115458868925574253
19 1113726303287832313
20 10106500546068997303
21 100565818748881580173
22 1000392220222080159553
23 10000086342219196627483
24 100000968983993326943773
25 1000003668771484617174013
26 10000003676344147490938993
27 100000000851162784301059363
28 1000000003019550663779419003
29 10000000008623601190186012273
30 100000000005238550467902311893
35 10000000000000325778825790175217703
40 1000000000000000002334523699629280598673
45 100000000000000000000002004740564798426955633
Pattern d : d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48
digits base prime
2 11
16 7933248530182091
17 20475715985020181
18 119308586807395871
19 1006587882969594041
20 10138452552101909921
21 100008272250687086171
22 1000506374351999420021
23 10001228451317520332801
24 100001209601717551062821
25 1000001086284058767464441
26 10000002338641743790277801
27 100000009483772319321986471
28 1000000024555737365512987751
29 10000000005876812661093319841
30 100000000018487752891895982911
35 10000000000000015141548551355951851
40 1000000000000000000282197071067938130221
45 100000000000000000000004356680452416578030761
50 10000000000000000000000000019294427203099948114321
Pattern d : d = 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48
digits base prime
16 7697168877290909
17 10071192314217869
18 136720189890477209
19 1166929234284358379
20 10183703425634251529
21 100008608327154479969
22 1000093882161524223089
23 10001180066670741853739
24 100001808688097483852519
25 1000001634089407242658199
26 10000003280688845760359039
27 100000002236656496199870479
28 1000000011205177804410223469
29 10000000028906250703813337699
30 100000000022081569415744041319
35 10000000000000108412629077454977119
40 1000000000000000000349508508460276218889
45 100000000000000000000006149198224095343810309
Pattern d : d = 0, 2, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48
digits base prime
14 10527733922579
17 15991086371740199
18 164873121596539229
19 1095072117072303089
20 10043408944336693799
21 100174788239843753309
22 1000179979740776120159
23 10002947662491015742229
24 100000006931656387431749
25 1000000429146622251113639
26 10000002616650954000849629
27 100000004921235497555683079
28 1000000009884376065170916029
29 10000000003399646286529392629
30 100000000020240263059296095789
35 10000000000000054122451329461300669
40 1000000000000000000368816080526066037739
45 100000000000000000000001385313747234235067869