Additions in 2024


December 2024

Prime 12-tuplet

1454135114 • 113# + 9546491279441 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42 (56 digits, Martin Raab, 2 Dec 2024)

Prime 9-tuplet

(Top-10)

50728826391859569198618950295536488928887945165957190994044099777383464509923034507147455377053880
• 499# + 114023297140211 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 (304 digits, 21 Dec 2024, Riecoin #2270639)

261341933947571565579295328792847460662673936839794615289220469826574331523924310152511397365036993640
• 491# + 302000014586509 + d, d = 0, 4, 10, 12, 18, 22, 24, 28, 30 (305 digits, 16 Dec 2024, Riecoin #2267207)

September 2024

Prime 9-tuplet

(Smallest with 400 bits to given pattern)
2399 + 11307587889766054691 + d, d = 0, 4, 10, 12, 18, 22, 24, 28, 30 (121 digits, 08 Sep 2024, Norman Luhn)
2399 + 12403562903502155229 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30 (121 digits, 03 Sep 2024, Norman Luhn)

August 2024

Prime 9-tuplet

(Smallest with 400 bits to given pattern)
2399 + 6217667486184181865 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30 (121 digits, 18 Aug 2024, Norman Luhn)
2399 + 13900143967050114483 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30 (121 digits, 13 Aug 2024, Norman Luhn)


July 2024

Prime 7-tuplet

(Smallest with 1000 bits to given pattern)
2999 + 484197336857362761 + d, d = 0, 2, 8, 12, 14, 18, 20 (301 digits, 27 Jul 2024, Norman Luhn, Primo)
2999 + 146826238981232163 + d, d = 0, 2, 6, 8, 12, 18, 20 (301 digits, 18 Jul 2024, Norman Luhn, Primo)

(Smallest with 900 bits to given pattern)
2899 + 1046914943414855151 + d, d = 0, 2, 8, 12, 14, 18, 20 (271 digits, 15 Jul 2024, Norman Luhn)

Prime Triplet

(NEW RECORD!)
4404139952163 • 267002 - 5 + d, d = 0, 4, 6 (20183 digits, 11 Jul 2024, Serge Batalov, PolySieve, OpenPFGW, CM)


June 2024

Prime 7-tuplet

(Smallest with 900 bits to given pattern)
2899 + 1207954032011773893 + d, d = 0, 2, 6, 8, 12, 18, 20 (271 digits, 25 June 2024, Norman Luhn)

Prime 8-tuplet

(Smallest with 900 bits to given pattern)
2899 + 1207954032011773893 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 (271 digits, 25 June 2024, Norman Luhn)


May 2024

Prime 7-tuplet

(Smallest with 800 bits to given pattern)
2799 + 189241192526119491 + d, d = 0, 2, 8, 12, 14, 18, 20 (241 digits, 11 May 2024, Norman Luhn)
2799 + 180502601074005513 + d, d = 0, 2, 6, 8, 12, 18, 20 (241 digits, 04 May 2024, Norman Luhn)

Prime Twins

201926367 • 2266668 ± 1 (80284 digits, 06 May 2024, Göran Schmidt, NewPGen, PRST)


April 2024

Prime 9-tuplet

(Top-10)

7250929313692442766966693303696774251366194754052517547936232541331423429106473060634375035985565
• 499# + 226374233346619 + d, d = 0, 4, 10, 12, 18, 22, 24, 28, 30 (303 digits, 10 Apr 2024, Riecoin #2122977)

Prime Twins

66982155216384 - 6698215528192 ± 1 (144605 digits, 26 Apr 2024, Roman Trunov; Cyclo; PRST)


March 2024

Prime 15-Tuplet

(Smallest with 100 bits to given pattern)
299 + 3835978203165531278229 + d, d = 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56 (30 digits, 01 Apr 2024, Norman Luhn)
299 + 13987290093945392964399 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56 (30 digits, 29 Mar 2024, Norman Luhn)
299 + 49408572140248891027005 + d, d = 0, 6, 8, 14, 20, 24, 26, 30, 36, 38, 44, 48, 50, 54, 56 (30 digits, 20 Mar 2024, Norman Luhn) (new pattern record)
299 + 13772503964850563400303 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56 (30 digits, 12 Mar 2024, Norman Luhn)

Prime 11-Tuplet

(Smallest with 200 bits to given pattern)
2199 + 155663590682805525635 + d, d = 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 36 (60 digits, 09 Mar 2024, Norman Luhn)
2199 + 270888872587335684033 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 (60 digits, 07 Mar 2024, Norman Luhn)

Prime 10-Tuplet

(Smallest with 300 bits to given pattern)
2299 + 30072281538825827499 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 32 (91 digits, 03 Mar 2024, Norman Luhn)

Prime Twins

22271030616384 - 2227103068192 ± 1 (136770 digits, 29 Mar 2024, Bruce Marler; Cyclo; PRST)

2603102760 • 777777 ± 1 (65739 digits, 20 Mar 2024, Göran Schmidt; NewPGen; PRST)

18936119858192 - 18936119854096 ± 1 (76000 digits, 06 Mar 2024, Bruce Marler; Cyclo; PRST)


February 2024

Prime 10-Tuplet

(Smallest with 300 bits to given pattern)
2299 + 65431951076759791293 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 (91 digits, 29 Feb 2024, Norman Luhn)

2299 + 69223046778039111573 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 (91 digits, 29 Feb 2024, Norman Luhn)
2299 + 68127277674271071753 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 (91 digits, 29 Feb 2024, Norman Luhn)

Prime 8-Tuplet

(Smallest with 512 bits to given pattern)
2511 + 200851397687832825 + d, d = 0, 6, 8, 14, 18, 20, 24, 26 (154 digits, 22 Feb 2024, Norman Luhn)
2511 + 609595131024077769 + d, d = 0, 2, 6, 12, 14, 20, 24, 26 (154 digits, 21 Feb 2024, Norman Luhn)
2511 + 210197440919245383 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 (154 digits, 18 Feb 2024, Norman Luhn)

(Smallest with 500 bits to given pattern)
2499 + 724875035915702535 + d, d = 0, 6, 8, 14, 18, 20, 24, 26 (151 digits, 18 Feb 2024, Norman Luhn)
2499 + 406612957572679449 + d, d = 0, 2, 6, 12, 14, 20, 24, 26 (151 digits, 16 Feb 2024, Norman Luhn)
2499 + 1042475763472726893 + d, d = 0, 2, 6, 8, 12, 18, 20, 26 (151 digits, 14 Feb 2024, Norman Luhn)

Prime Twins

15891732708192 - 15891732704096 ± 1 (75376 digits, 24 Feb 2024, Frank Doornink; Cyclo; PRST)


January 2024

Prime 14-Tuplet

(Smallest with 100 bits to given pattern)
299 + 82927738261722461943 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50 (30 digits, 05 Jan 2024, Norman Luhn)
299 + 209680156109951524551 + d, d = 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50 (30 digits, 05 Jan 2024, Norman Luhn)

Prime 10-Tuplet

(Smallest with 256 bits to given pattern)
2255 + 35723838822699340113 + d, d = 0, 2, 6, 8, 12, 18, 20, 26, 30, 32 (77 digits, 04 Jan 2024, Norman Luhn)
2255 + 3030735700318485549 + d, d = 0, 2, 6, 12, 14, 20, 24, 26, 30, 32 (77 digits, 05 Jan 2024, Norman Luhn)

Prime Twins

9960942348192 - 9960942344096 ± 1 (73715 digits, 26 Jan 2024, Roman Trunov, Cyclo, PRST)

8957215318192 - 8957215314096 ± 1 (73337 digits, 26 Jan 2024, Matthias Baur, Cyclo, PRST)

7955076968192 - 7955076964096 ± 1 (72915 digits, 21 Jan 2024, Rob Gahan; Cyclo; PRST)

6470208268192 - 6470208264096 ± 1 (72180 digits, 16 Jan 2024, Rob Gahan; Cyclo; PRST)

6915957608192 - 6915957604096 ± 1 (72417 digits, 13 Jan 2024, Bruce Marler; Cyclo; PRST)

6298136548192 - 6298136544096 ± 1 (72084 digits, 09 Jan 2024, Rob Gahan; Cyclo; PRST)

5049833348192 - 5049833344096 ± 1 (71298 digits, 05 Jan 2024, Matthias Baur, Cyclo, PRST)

893319633 • 2172110 ± 1 (51820 digits, 01 Jan 2024, Serge Batalov; NewPGen; OpenPFGW)