Initial members of "L - consecutive prime k-tuplets with the smallest possible and constant gap (D)"
Consecutive Prime Twins | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 6 | [ 5 + d ] + 6 · n | d = 0, 2 | 0,1 | ||
3 | 12 | [ 5 + d ] + 12 · n | d = 0, 2 | 0..2 | ||
4 | 30 | [ 11 + d ] + 30 · n | d = 0, 2 | 0..3 | ||
5 | 30 | [ 1702218611 + d ] + 30 · n | d = 0, 2 | 0..4 | ||
6 | 210 | [ 3042491 + d ] + 210 · n | d = 0, 2 | 0..5 | 04 Mar 2025 | Aliaksei Strakh |
7 | 210 | [ 66583737656789 + d ] + 210 · n | d = 0, 2 | 0..6 | ||
8 | 210 | [ 40947105152901707 + d ] + 210 · n | d = 0, 2 | 0..7 | 18 Feb 2025 | Aliaksei Strakh |
9 | 1890 | [ 2705965414000880284271 + d ] + 1890 · n | d = 0, 2 | 0..8 | 04 Mar 2025 | Aliaksei Strakh |
Consecutive Prime Triplets | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 6 6 |
[ 5 + d ] + 6 · n [ 7 + d ] + 6 · n | d = 0, 2, 6 d = 0, 4, 6 | 0,1 | ||
3 | 30 30 |
[ 97547 + d ] + 30 · n [ 7 + d ] + 30 · n | d = 0, 2, 6 d = 0, 4, 6 | 0..2 | ||
4 | 210 210 |
[ 38680961771 + d ] + 210 · n [ 2783876437 + d ] + 210 · n | d = 0, 2, 6 d = 0, 4, 6 | 0..3 | ||
5 | 420 420 |
[ 1063383716622671 + d ] + 420 · n [ 366943408969447 + d ] + 420 · n | d = 0, 2, 6 d = 0, 4, 6 | 0..4 | ||
6 | 420 420 |
[ 38031991346321640527 + d ] + 420 · n [ ? + d ] + 420 · n | d = 0, 2, 6 d = 0, 4, 6 | 0..5 | 05 Mar 2025 | Aliaksei Strakh |
Consecutive Prime Quadruplets | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 30 |
[ 1006301 + d ] + 30 · n | d = 0, 2, 6, 8 | 0,1 | ||
3 | 90 |
[ 11 + d ] + 90 · n | d = 0, 2, 6, 8 | 0..2 | ||
4 | 420 |
[ 6234140990672051 + d ] + 420 · n | d = 0, 2, 6, 8 | 0..3 |
Consecutive Prime Quintuplets | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 90 90 |
[ 11 + d ] + 90 · n [ 7 + d ] + 90 · n | d = 0, 2, 6, 8, 12 d = 0, 4, 6, 10, 12 | 0,1 | ||
3 | 210 210 |
[ 24097678829994941 + d ] + 210 · n [ 74426354260647787 + d ] + 210 · n | d = 0, 2, 6, 8, 12 d = 0, 4, 6, 10, 12 | 0..2 |
Consecutive Prime Sextuplets | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 210 |
[ 5835906544537 + d ] + 210 · n | d = 0, 4, 6, 10, 12, 16 | 0,1 | ||
3 | 210 |
[ 50038627250687303646277 + d ] + 210 · n | d = 0, 4, 6, 10, 12, 16 | 0..2 | Jörg Waldvogel & Peter Leikauf |
Consecutive Prime Septuplets | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 210 210 |
[ 1683059174212301+ d ] + 210 · n [ 482046424357019 + d ] + 210 · n | d = 0, 2, 6, 8, 12, 18, 20 d = 0, 2, 8, 12, 14, 18, 20 | 0,1 |
Consecutive Prime Octuplets | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 60 420 420 |
[ 10458834002271815117 + d ] + 60 · n [ 7387829334225124901 + d ] + 420 · n [ 1365135293377079663 + d ] + 420 · n | d = 0, 2, 6, 12, 14, 20, 24, 26 d = 0, 2, 6, 8, 12, 18, 20, 26 d = 0, 6, 8, 14, 18, 20, 24, 26 | 0,1 |
Consecutive Prime Nonuplets | ||||||
L | D | First initial members | Pattern d | n's | Where | Who |
2 | 60 |
[ 54014646858393564373 + d ] + 60 · n | d = 0, 4, 6, 10, 16, 18, 24, 28, 30 | 0,1 | Jörg Waldvogel & Peter Leikauf |